- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Conde, Mark (2)
-
Dhadly, Manbharat (2)
-
Makela, Jonathan (2)
-
Sassi, Fabrizio (2)
-
Banks, Forest (1)
-
Belehaki, Anna (1)
-
Bhatt, Asti (1)
-
Bristow, William (1)
-
Budzien, Scott (1)
-
Burleigh, Meghan (1)
-
Chau, Jorge (1)
-
Chou, Min-Yang (1)
-
Dandenault, Patrick (1)
-
Datta-Barua, Seebany (1)
-
Dhadly, Manbharat S. (1)
-
Donovan, Eric (1)
-
Drob, Douglas (1)
-
Emmert, John (1)
-
Greer, Katelynn (1)
-
Halford, Alexa J. (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The Earth’s upper atmosphere (85–550 km) is the nearest region of geospace and is highly dynamic in nature. Neutral winds impact a large portion of the dynamics in this region. They play a critical role in determining the state of the ionosphere-thermosphere system at almost all latitudes and altitudes. Their influences range from wave breaking/dissipation in the mesosphere and lower thermosphere to global redistribution of energy and momentum deposited at high latitudes by the magnetosphere. Despite their known importance, global geospace neutral winds have remained one of the least sampled state parameters of the Earth’s upper atmosphere and are still poorly characterized even after multiple decades of observations. This paper presents an overview of historical neutral wind measurements and the critical need for their global height-resolved measurements. Some satellite missions are still operational and deliver valuable information on the contribution of neutral winds in global atmospheric dynamics. However, many significant gaps remain in their global monitoring, and our current understanding of the drivers of neutral winds is incomplete. We discuss the challenges posed by these measurement gaps in understanding geospace physics and weather. Further, we propose some wind observation solutions, including the simultaneous operations of upcoming NASA DYNAMIC and GDC missions as well as support for the development of ground-based observing methodologies, that will lead to fundamental advances in geospace science and address humanity’s emerging space needs.more » « less
-
Conde, Mark; Hampton, Donald; Thorsen, Denise; Ridley, Aaron; Bristow, William; Harding, Brian; Dhadly, Manbharat; Mesquita, Rafael; Dandenault, Patrick; Banks, Forest; et al (, Bulletin of the AAS)
-
Zawdie, Kate; Belehaki, Anna; Burleigh, Meghan; Chou, Min-Yang; Dhadly, Manbharat S.; Greer, Katelynn; Halford, Alexa J.; Hickey, Dustin; Inchin, Pavel; Kaeppler, Stephen R.; et al (, Frontiers in Astronomy and Space Sciences)The impact of regional-scale neutral atmospheric waves has been demonstrated to have profound effects on the ionosphere, but the circumstances under which they generate ionospheric disturbances and seed plasma instabilities are not well understood. Neutral atmospheric waves vary from infrasonic waves of <20 Hz to gravity waves with periods on the order of 10 min, for simplicity, hereafter they are combined under the common term Acoustic and Gravity Waves (AGWs). There are other longer period waves like planetary waves from the lower and middle atmosphere, whose effects are important globally, but they are not considered here. The most ubiquitous and frequently observed impact of AGWs on the ionosphere are Traveling Ionospheric Disturbances (TIDs), but AGWs also affect the global ionosphere/thermosphere circulation and can trigger ionospheric instabilities (e.g., Perkins, Equatorial Spread F). The purpose of this white paper is to outline additional studies and observations that are required in the coming decade to improve our understanding of the impact of AGWs on the ionosphere.more » « less
An official website of the United States government
